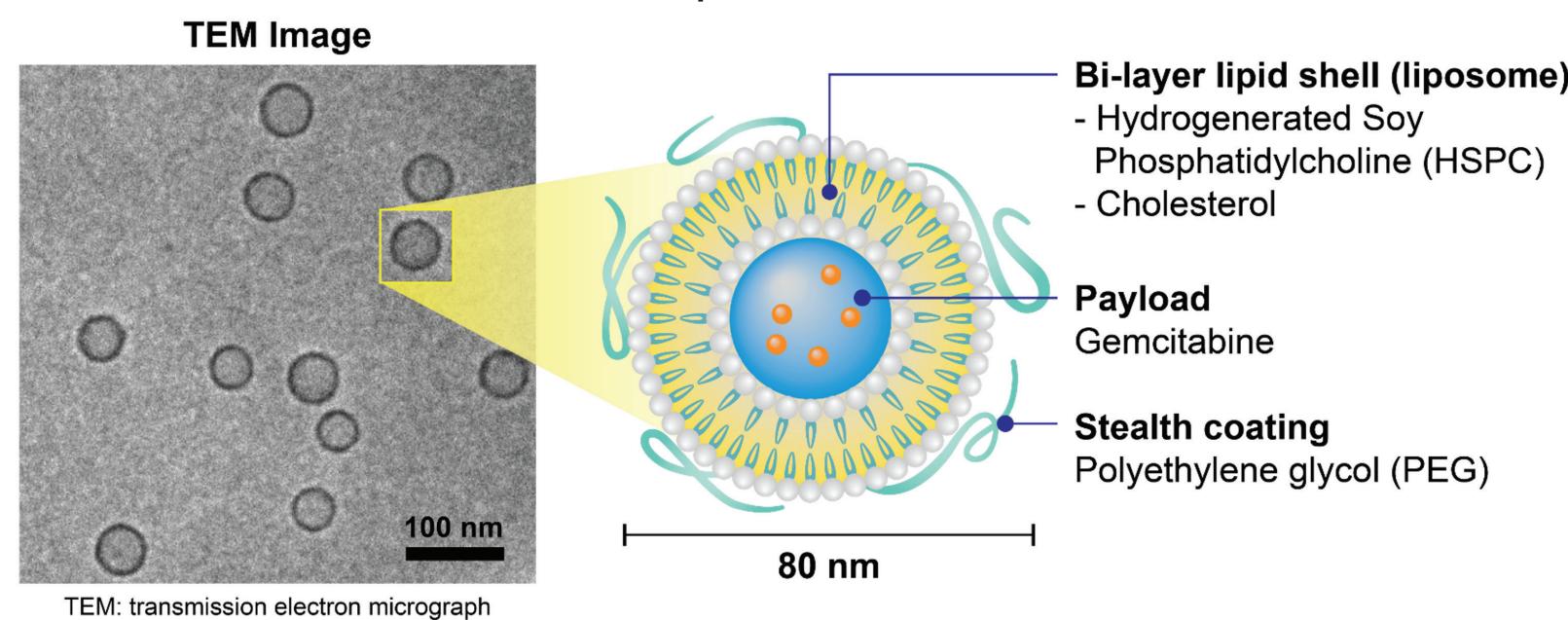
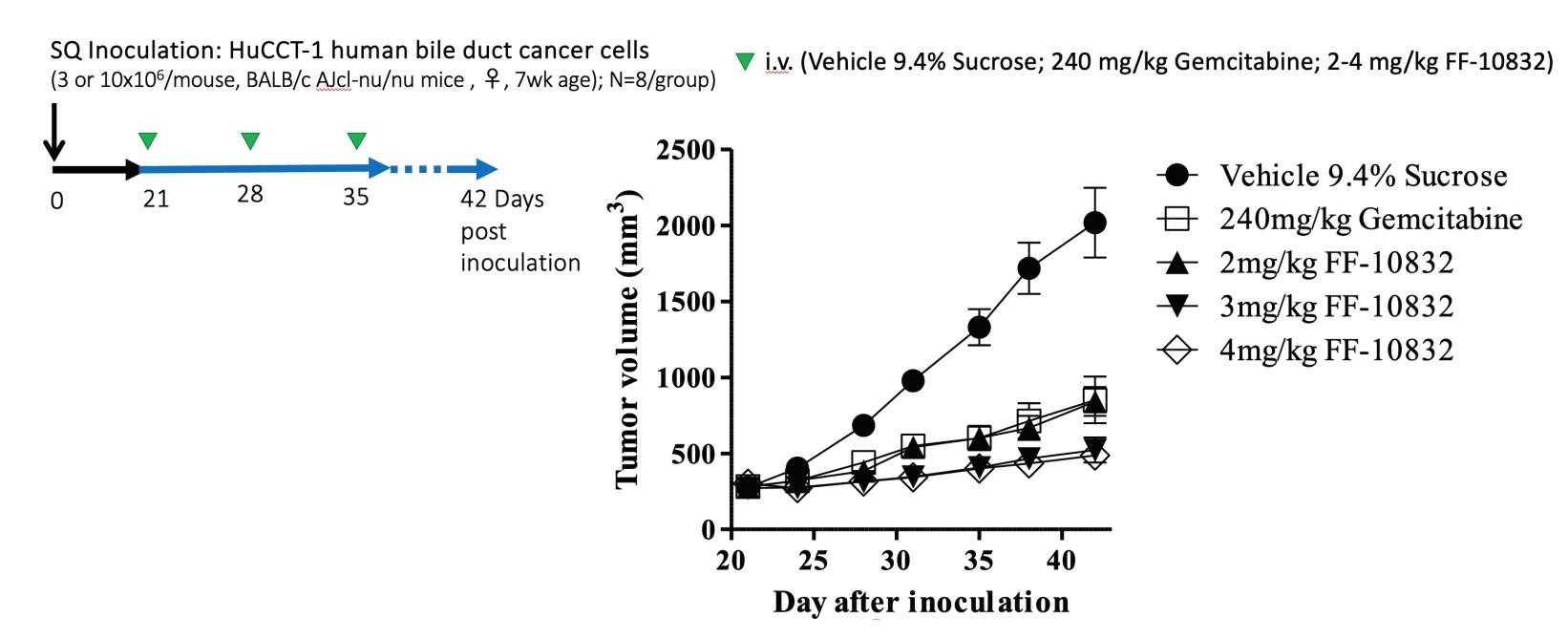
4092 Phase 1 Expansion Study of FF-10832 (Liposomal Gemcitabine) Antitumor Activity in Patients with Advanced Biliary Carcinomas


G. S. Falchook¹, E. Borazanci², B. S. Lin³, J. Arshad⁶, J. Henry¹, A.J. Scott⁶, K. Cheung⁴, M. Johansen⁴, G. Maier⁴, M. Mori⁵, S. Shimoyama⁴, R. A. Subach⁴, D. Wages⁴, N. Yamada⁴, R.T. Shroff⁶

¹Sarah Cannon Research Institute at HealthONE, Denver, CO; ²HonorHealth Research Institute, Scottsdale, AZ; ³Virginia Mason Medical Center, Seattle, WA; ⁴FUJIFILM Pharmaceuticals U.S.A., Inc., Cambridge, MA; ⁵FUJIFILM Corporation., Tokyo, Japan; ⁶University of Arizona Cancer Center, Tucson, AZ.

Liposomal Encapsulation Provides Stable, Consistent **Delivery of Gemcitabine**


FF-10832 — a Novel Liposomal Formulation of Gemcitabine

- > The FF-10832 liposome formulation is stable for >3 years when stored at 2-8°C
- > Stable liposome encapsulation increases the circulating half-life of gemcitabine (~ 30 hours) and enhances drug delivery via macrophage uptake with subsequent release and accumulation in tumor tissue

Pre-clinical Activity of FF-10832 in Biliary Carcinoma

> Improved in vivo activity has been demonstrated with FF-10832 compared to gemcitabine in both gemcitabinesensitive and resistant tumor models¹, including activity demonstrated in a human bile duct cancer model

- > FF-10832 has demonstrated immune activation in the TME that is distinct from gemcitabine, with ability to enhance effects of immune checkpoint blockade²⁻⁵
- Marrow-sparing biodistribution has been demonstrated, contributing to a favorable safety profile¹

Study Design: Data Are Presented For Biliary Tract Expansion (BTC) Cohort

- > The first in human dose finding trial (NCT03440450)³ demonstrated a tolerable safety profile with once per cycle dosing; anti-tumor activity was observed in heavily pre-treated patients who progressed on prior gemcitabine
- In dose finding, two gallbladder carcinoma patients were evaluable; both were treated at 40 mg/m² Q 28d and had progressed on gemcitabine therapy; one maintained a PR for 72 weeks, one progressed after 2 cycles
- > An expansion cohort of BTC patients was subsequently enrolled at the RP2D of 40 mg/m² Q 21d (n=15 planned)

Phase 1 dose escalation of FF-10832 in advanced solid tumors [n=73 treated (all doses/schedules)]			Biliary Tract Cancer Expansion Cohort (n=18 treated; 16 RECIST evaluable)
Twice per cycle dosing Once per cycle dosing			
D1, D15 Q 28d D1, D8 Q 21d	D1 Q 28d	D1 Q 21d	RP2D/Schedule = 40 mg/m² Day 1 Q 21 days
1.2 mg/m ² 23 mg/m ² DLT Skin Ulcers 12 mg/m ² DLT Skin Ulcers			 Treatment until disease progression or unacceptable toxicity
	40 mg/m ² 48 mg/m ² RP2D	40 mg/m ² RP2D 55 mg/m ²	 RECIST 1.1 evaluation Q 2 cycles Circulating immune cell populations/PK evaluated
RP2D, recommended Phase 2 de	ose	DLT Low PLTs	

Key Entry Criteria of Biliary Tract Expansion Cohort

- > ≥18 years of age with metastatic/unresectable cholangiocarcinoma or gallbladder cancer
- Progressed on gemcitabine/cisplatin or gemcitabine-based therapy
- No more than 3 prior lines of systemic therapy
- RECIST 1.1 evaluable
- \triangleright ECOG status of 0 or 1; life expectancy of \ge 3 months
- \triangleright Hgb ≥9 g/dL; Plts ≥100 K/μL; ANC ≥1.5 K/μL
- ➤ Creatinine ≤1.5X ULN; bilirubin ≤2X ULN; AST/ALT ≤2.5X ULN (5X ULN with hepatic metastases); albumin >3 g/dL
- > Serious cardiac condition (NYHA class III or IV) is exclusionary (QTc ≤450/470 msec for male/female)

Baseline Demographics & Prior Therapy of Treated BTC Patients (21 consented, 18 enrolled and treated; 16 evaluable for RECIST response)

	N=18 treated
Median age, years (range)	68 (34–79)
Male/female, n	12 / 6
Biliary tract cancer type/location, n	
Cholangiocarcinoma (CCA)	17
Intrahepatic (iCCA)	10
Extrahepatic	7
Perihilar (pCCA)	6
Distal (dCCA)	1 (ampullary)
Gallbladder adenocarcinoma	1
Screening ECOG performance status, n, (0 / 1)	3 / 15
Prior therapy	
No. of prior treatment regimens, median (range)	2 (1–3)
Best response to most recent cancer therapy, n	CR (0), PR (0), SD (5), PD (9), UNK (4)
Prior gemcitabine therapy, n (%)	18 (100%)
Prior PD-1/L1 therapy , n (%)	8 (44%)
	FGFR2 / tinengotinib (Patient 9)
Targetable mutations / prior treatment	BRCA1 / olaparib (Patient 18)
	IDH1 / ivosidenib (Patient 4)

Dose Intensity & Safety (n=18 treated)

- Median dose intensity was 90.6% (62.5–100%); median cycles received was 3.5 (1–28)
- > The 2 patients still on study for 9.2 months (12 cycles) and 23.3 months (28 cycles) required dose reduction to 23 mg/m² by cycle 3 and cycle 21, respectively, due to fatigue
- > 3 patients had dose interruption due to infusion related reactions at cycle 1; all dosing was completed
- ➤ Collectively, the most common related AEs were gastrointestinal (\preceq appetite, nausea and vomiting)
- > Treatment-related pyrexia was observed in ~40% of patients (1 grade 3); grade 1 pyrexia SARs (n=2) were accompanied by abdominal pain and prompted hospitalization for fever work-up 1–2 days after dosing; these findings may be associated with delayed infusion reactions
- Fatigue and muscular weakness were observed in ~30% of patients; 3 patients experienced Grade 3 muscular weakness, one that required a dose reduction at cycle 5 (Patient 14)
- Minimal hematologic toxicity was observed; no neutropenia was observed
- No grade 4 toxicity was observed

n=18 treated, n (%)* Grade 3** 8 (44.4) Decreased appetite 7 (38.9) 7 (38.9) 6 (33.3) 6 (33.3) Headache 5 (27.8) 5 (27.8) 3 (16.7) Muscular weakness 5 (27.8) 2 (11.1) Thrombocytopenia Dehydration 3 (16.7) Anemia 3 (16.7) Back pain 3 (16.7) 3 (16.7) Influenza like illness

Treatment-related AEs in ≥3 Patients

3 (16.7) Infusion related reaction *Number of unique patients experiencing at least one occurrence

**Other grade 3 events included musculoskeletal pain and back pain (n=1), hyperbilirubinemia (n=1), hypernatremia (n=1)

Anti-tumor Activity: RECIST Response

Best Response (n=16)*

*2 of 18 treated patients discontinued prior to first

Not evaluable

RECIST 1.1 evaluation

Two partial responses (PRs) were observed (ORR, 12.5%):

- 69 yo M with gallbladder adenocarcinoma (Patient 14) Prior therapy (BOR): "NUC-gemcitabine+cisplatin;" cisplatin DC'd
- at cycle 9 (SD); capecitabine + XRT (SD) ➤ PR at cycle 2, continued through cycle 10 (greatest ↓ -55%)
- > PD after 12 cycles (new lesions); continued PR in target lesions

69 yo M with perihilar CCA (Patient 15)

- Prior therapy (BOR): gemcitabine+cisplatin (SD); gemcitabine+ cisplatin+durvalumab [DC'd, neuropathy (platinum), psoriasis (durvalumab)]
- > PR at cycle 2, CR of target lesions (non-target lesions, nonCR/nonPD); off study at cycle 3, patient decision to pursue hospice

Prolonged Stable Disease in 4 Patients

Prolonged disease control (> 6 cycles) was observed in 4 of 18 patients 2 patients remain on study:

63 yo F with intrahepatic CCA (Patient 13 on study >23 months)

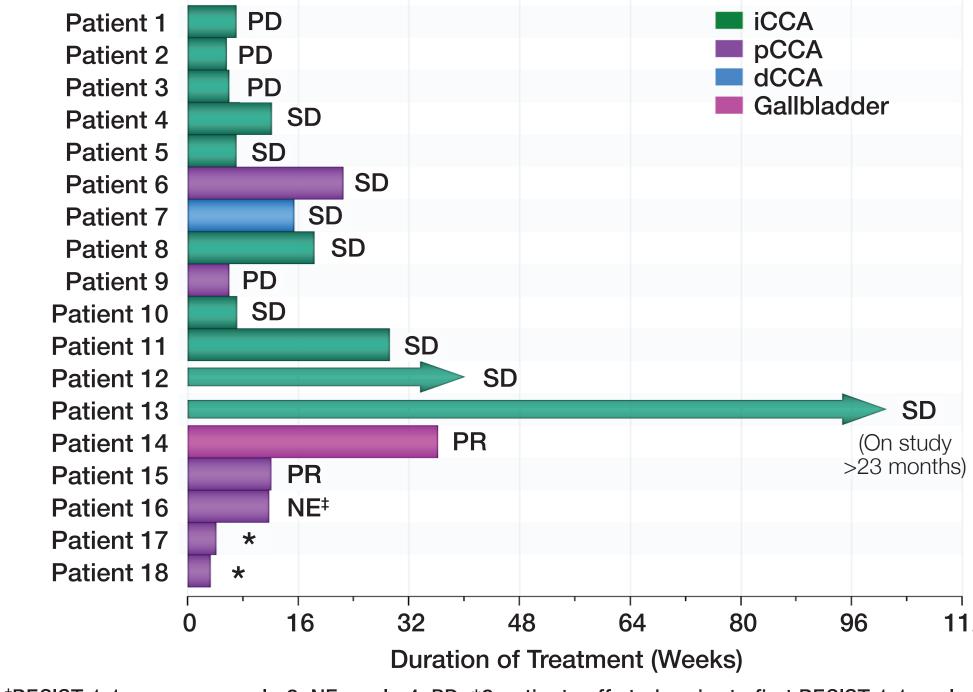
- > Dx: 12/2019; path stage IV (5/2021); Prior therapy: gemcitabine+Nab-paclitaxel+cisplatin; gemcitabine+capecitabine; ILT2 antibody trial (BOR:SD); Y90
- Maintaining SD 23.3 months (28 cycles) on study; dose was reduced at cycle 12 (30 mg/m²) and cycle 21 (23 mg/ m²) due to fatigue; treatment schedule to be shifted to Q 4 weeks for next cycles

79 yo M with intrahepatic CCA (Patient 12 on study >9 months)

- > Dx: 12/2021, clinical stage II, mets to liver; Prior therapy: cisplatin+gemcitabine; cisplatin+gemcitabine+durvaluma b; durvalumab maintenance (BOR: SD)
- Maintaining SD 9.2 months (12 cycles) on study; dose was reduced to 23 mg/m² by cycle 3 due to fatigue; treatment schedule was shifted to Q 4 weeks at cycle 11

Radiographic Response (n=16 evaluated per RECIST 1.1*) ■ iCCA ■ pCCA ■ dCCA ■ Gallbladder SD SD SD SD PD SD -20% --120%

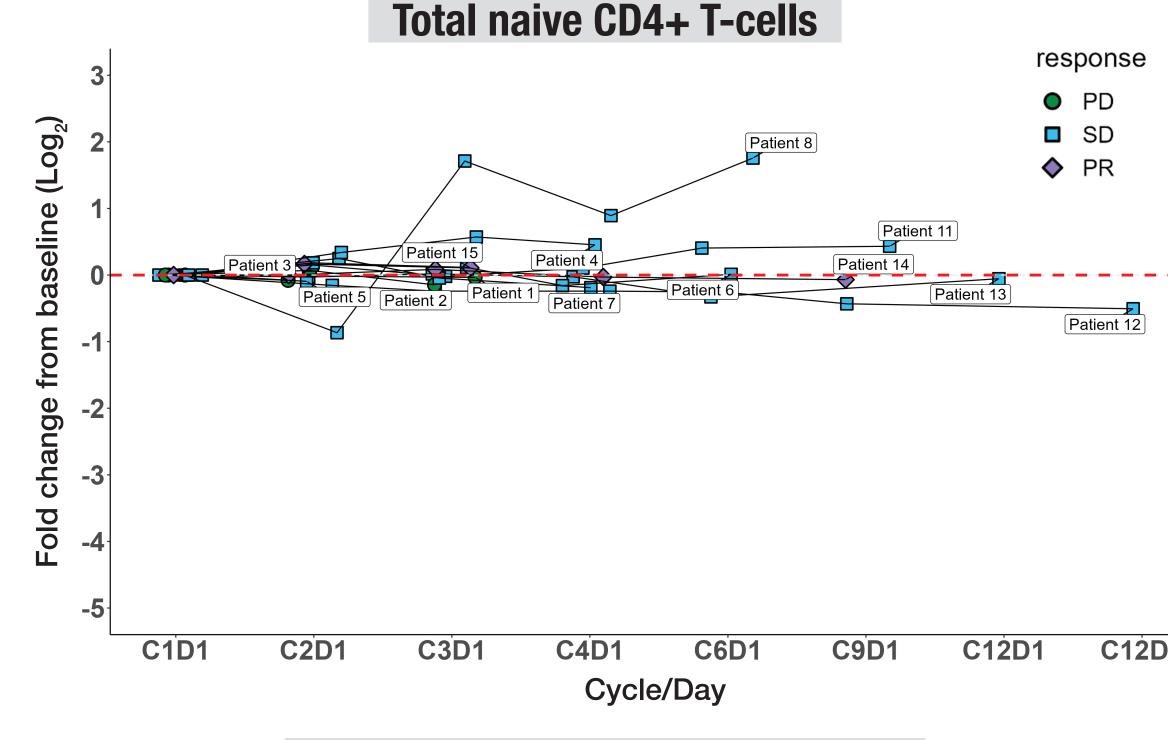
*1 of 16 patients evaluated per RECIST 1.1 had a response of NE at cycle 2 prior to progressing iCCA, intrahepatic cholangiocarcinoma; pCCA, perhilar cholangiocarcinoma; dCCA, distal cholangiocarcinoma

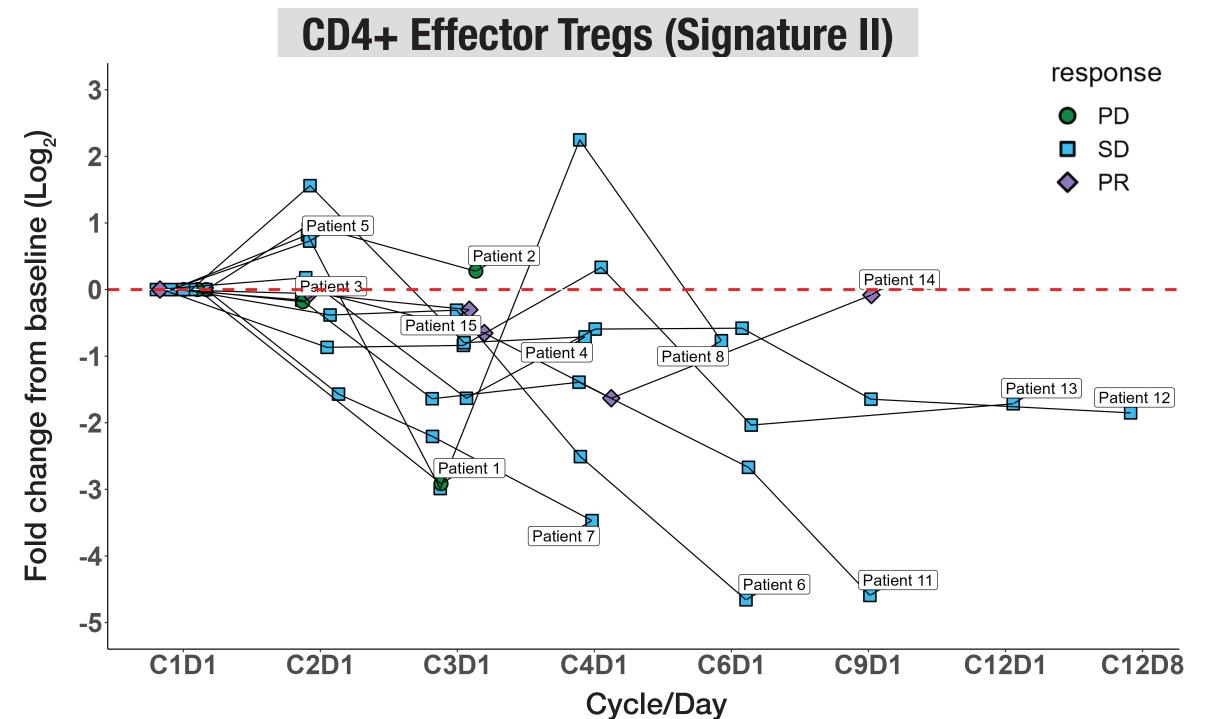


Patient Disposition

- Treatment ongoing (2)
- Discontinued treatment (16)
- Disease progression (11)
- Withdrew consent (1*)
- AE: sepsis/resp failure (1*)
- Patient decision (2) Pursued hospice (1)

Treatment Duration (n=18 treated)


- Median time on study: 18 (3.3–169.1)
- mPFS: 2.8 months (95%CI: 1.3–6.7)
- > mOS: 9.1 months (95% CI: 5.6–NR)



*RECIST 1.1 response: cycle 2, NE; cycle 4, PD; *2 patients off study prior to first RECIST 1.1 evaluation

Peripheral Blood T-cells

- Antitumor immune activation in the TME has been shown with gemcitabine, including ↓'s in immune suppressive CD4+ Tregs and M2 macrophages and ↑'s in antitumor CD8+ T cells and M1 macrophages⁶. Released gemcitabine from FF-10832 has also induced this antitumor microenvironment^{2,5}
- > Circulating T-cells were measured by flow cytometry in patients as a surrogate of immunocompetency in the tumor
- > Consistent with previously reported dose-escalation data³, circulating naïve CD4+ T-cells were unchanged, while 4 to 32-fold (2–5 log₂) decreases were observed in circulating immune suppressive CD4+ Effector Tregs (Signature II) in patients with longer term SD, which share highly similar cellular markers with intra-tumoral Tregs⁷

Pharmacokinetics

 \triangleright PK profile & extended gemcitabine plasma $t_{1/2}$ (~30 hrs) demonstrated in this patient population was consistent with patients receiving the RP2D of 40mg/m² in the dose escalation phase³

Summary

- > FF-10832 monotherapy has demonstrated anti-tumor activity in heavily pre-treated patients with advanced BTC who progressed on gemcitabine-based therapy
- > Activity of single agent FF-10832 (ORR, 12.5%; mPFS & mOS, 2.8 & 9.1 months) compares favorably to 2nd line combination therapies in larger trials (ORR, 4–11%; mPFS & mOS, 4 & 7.4 months)^{8,9}
- > Prolonged (>6 cycles) disease control was observed in an additional 4 of 18 treated patients; 2 patients remain on study after 9 and 23 months
- > FF-10832 was tolerable with a predictable and manageable adverse event profile; dose intensity was 90.6%
- \triangleright PK was consistent with the dose finding trial³; prolonged circulating $t_{1/2}$ of ~30 hrs observed
- > T-cell analysis shows immune modulation indicative of anti-tumor immune activation that correlates with clinical response; results are consistent with ongoing trial of FF-10832 + pembrolizumab in NSCLC and urothelial carcinoma (NCT 05318573)4

Sponsor: FUJIFILM Pharmaceuticals U.S.A., Inc.; Support from Translational Drug Development (Scottsdale, AZ), study execution; LabCorp (Madison, WI), bioanalysis; CellCarta (Montreal, Canada), immune cell flow cytometry.

Study contact: Gerald.Falchook@SarahCannon.com

with a median of 3.5 (1–28) cycles received

Partnering activities: fphucontact@fujifilm.com Copies of this poster obtained through QR code are for personal use only and may not be reproduced without permission from ASCO or the author of poster.

References 1. Pharm Res 2021; 38(6):1093-1106 2. Cancer Res 2019; 79(13 suppl):3953 3. J Clin Oncol 2022; 40(16 suppl):3097 4. J Clin Oncol 2024; 42(16 suppl):2615 5. AACR Proceedings 2025: 2161 6. Cancer Med 2024; May;13(10):e7287 7. Trends Cancer, 2020 Jan; 6(1):3-6 8. Lancet Oncol 2021; 22(5):690-701

9. JAMA Oncol 2023; May 1;9(5):692–699